
Day 2
Task: avoid

Spoiler

How to Avoid Disqualification in 75 Easy Steps (avoid)
by Tobias Lenz

Throughout, we denote the positions of the chairmen by 1 ≤ 𝑎 ≤ 𝑏 ≤ 1 000, and 𝑁 = 1000 is the number
of positions.

Subtask 1. 𝑅 = 10, 𝐻 = 1, and both chairmen are located at the same position.

This subtask is easiest to solve if we invert the problem: instead of determining for each robot which
positions it scouts, we will determine for each position 𝑝 the set of robots 𝑅𝑝 ⊆ {1,… , 10} scouting it.
If both chairmen are located at position 𝑎, a robot 𝑟 will detect at least one chairman if and only if
𝑟 ∈ 𝑅𝑎. Hence, the results of all 10 robots are equivalent to knowing the set 𝑅𝑎. To determine 𝑎 from
this, we therefore need to ensure that the sets 𝑅𝑝 are all different.
Fortunately, 210 ≥ 1 000, and so we can assign a unique subset 𝑅𝑝 ⊆ {1,… , 10} of the robots to each
position 𝑝. A simple way to do this is to use the binary representation of 𝑝—then, the results of the
robots spell out the position of the chairmen in binary, solving this subtask.

Subtask 2. 𝑅 = 𝐻 = 20

This subtask can be solved with two binary searches. With the first binary search, we want to determine
the smallest position 𝑎 of one of the chairmen. For this, we will always keep an interval [ℓ, 𝑟] that
contains 𝑎, starting with ℓ = 1 and 𝑟 = 1 000. Then, in each step, we pick 𝑚 = ⌊(ℓ + 𝑟)/2⌋, send a robot to
the positions {ℓ, ℓ + 1, … ,𝑚}, and wait for its result. If this robot detects a chairman, we know that the
interval [ℓ,𝑚] must contain 𝑎, and so we set 𝑟 = 𝑚. Otherwise, 𝑎 must be contained in [𝑚 + 1, 𝑟], and
so we assign ℓ = 𝑚 + 1. Once we have ℓ = 𝑟, which happens after at most ⌈log2 1000⌉ = 10 steps (and
10 robots), we have determined 𝑎 as required.
With the second binary search, we can simply determine the largest position 𝑏 of one of the chairmen
analogously, again with 10 robots. Therefore, we can determine the positions of both chairmen with
20 robots in total.
Note that we could also execute the above two binary searches simultaneously which would reduce
the total time required from 20 hours to 10 hours. It is easy to prove by counting that at least 19
robots are necessary, but the Scientific Committee does not know whether there exists a solution that
uses at most 19 robots.

Subtask 3. 𝑅 = 30, 𝐻 = 2

To find the positions of the two chairmen in 2 hours, recall our approach to Subtask 1. To all positions
𝑝, we had assigned a distinct set 𝑅𝑝 ⊆ {1,… , 10} of robots, namely the binary representation of 𝑝. We
will denote the 𝑖-th bit of 𝑝 by 𝑝𝑖, and so 𝑖 ∈ 𝑅𝑝 if and only if 𝑝𝑖 = 1.
Now, in this subtask, we will send 10 robots as described by the sets 𝑅𝑝, and we send an additional
10 robots for the complements 𝑅𝑐𝑝, all during the first hour. Based on the results of these robots, we
will know for all 𝑖 that either 𝑎𝑖 = 𝑏𝑖, in which case we will also the value of 𝑎𝑖 and 𝑏𝑖, or 𝑎𝑖 ≠ 𝑏𝑖.
Now, in the second hour, we need to reconstruct the remaining information. If 𝑖 and 𝑗 are bits such
that both 𝑎𝑖 ≠ 𝑏𝑖 and 𝑎𝑗 ≠ 𝑏𝑗, we need to determine whether 𝑎𝑖 = 𝑎𝑗, and equivalently 𝑏𝑖 = 𝑏𝑗, or whether
𝑎𝑖 ≠ 𝑎𝑗, and equivalently 𝑏𝑖 ≠ 𝑏𝑗.
To do this, let 𝑖 be a bit such that 𝑎𝑖 ≠ 𝑏𝑖. Now, for every 𝑗 that is different between 𝑎 and 𝑏, we will
simultaneously send a robot to all those positions 𝑝 where 𝑝𝑖 = 𝑝𝑗. If this robot detects a chairman,

1/4



Day 2
Task: avoid

Spoiler

we know that 𝑎𝑖 = 𝑎𝑗 and also 𝑏𝑖 = 𝑏𝑗, and otherwise we know that 𝑎𝑖 ≠ 𝑎𝑗 and also 𝑏𝑖 ≠ 𝑏𝑗. This lets us
reconstruct 𝑎 and 𝑏 based on the 𝑖-th bit. This strategy uses at most 29 robots in 2 hours.

Subtask 4. 𝑅 = 75, 𝐻 = 1

This is the only output-only subtask of this ceoi.*

Constructive solutions. We begin by describing some constructive solutions.

Firstly, we can adapt the solution to Subtask 3. Instead of using the second phase of that
strategy, we can, for each pair of bits 𝑖 and 𝑗, already send a robot in the first phase to all
positions 𝑝 with 𝑝𝑖 = 𝑝𝑗. This uses a total of 20 + (

10
2 ) = 𝟔𝟓 robots. Then, we already know the

results for all robots that we would have sent out during the second phase, and so we can
immediately reconstruct 𝑎 and 𝑏 after just one hour.
To get a solution with fewer robots, we can use a base other than 2. We will describe a solution
with base 3, where we again denote the 𝑖-th digit of a position 𝑝 by 𝑝𝑖. Then, for every digit 𝑖 and
every 𝑑 ∈ {0, 1, 2}, we send a robot to all positions 𝑝 with 𝑝𝑖 = 𝑑. Since there are ⌈log3 1000⌉ = 7
digits, this uses 21 robots, and it will tell us for every digit 𝑖 whether 𝑎𝑖 = 𝑏𝑖, in which case we
will also know the values of 𝑎𝑖 and 𝑏𝑖, or whether 𝑎𝑖 ≠ 𝑏𝑖. In this second case we know which
two digits 𝑎𝑖 and 𝑏𝑖 are, so we know two digits 𝑑

1
𝑖 , 𝑑

2
𝑖 ∈ {0, 1, 2} such that {𝑎𝑖, 𝑏𝑖} = {𝑑

1
𝑖 , 𝑑

2
𝑖 }, but

we do not know whether 𝑎𝑖 = 𝑑
1
𝑖 or 𝑎𝑖 = 𝑑

2
𝑖 , and similarly for 𝑏𝑖.

Thus, for every pair of digits 𝑖 and 𝑗 we also need to send robots to make sure that if 𝑑1𝑖 ≠ 𝑑
2
𝑖

and 𝑑1𝑗 ≠ 𝑑
2
𝑗 , we know whether 𝑑

1
𝑖 and 𝑑

1
𝑗 are both digits of 𝑎 or both digits of 𝑏, or whether this

is not the case. It turns out that it is again sufficient for this to send a robot to all positions 𝑝
with 𝑝𝑖 = 𝑝𝑗. Indeed, one of the digits 𝑑

1
𝑖 or 𝑑

2
𝑖 must have the same value as one of the digits 𝑑

1
𝑗

or 𝑑2𝑗 , and so the result of this robot tells us whether these two digits are both digits of 𝑎 or
both digits of 𝑏. This uses an additional (72) = 21 robots, for a total of 𝟒𝟐 robots.
There also exists a solution with base 4 that uses 𝟒𝟎 robots.
Finally, it is possible to come up with a scheme that takes a solution for 𝑁 positions and 𝑅
robots and produces a scheme for 𝑁2 positions and 3𝑅 robots. For this, let 𝑅𝑝 be the sets of
robots assigned to each position 𝑝 in the scheme for 𝑁 positions. We then represent the 𝑁2

positions as pairs (𝑝, 𝑞) with 1 ≤ 𝑝, 𝑞 ≤ 𝑁, and for (𝑝, 𝑞) we send 𝑅 robots each according to 𝑅𝑝,
𝑅𝑞, and 𝑅𝑝+𝑞 (mod 𝑁). It can be checked that this allows you to uniquely determine the positions
of the chairmen among all 𝑁2 positions. Starting with a solution with 𝑁 = 𝑅 = 6 and applying
this twice leads to a solution with 𝟓𝟒 robots.

A general approach. Assuming that we have already determined where each robot is sent to, we can
check efficiently whether this is a valid scheme that always determines the positions of the chairmen
with certainty. To do so, consider again the sets 𝑅𝑝 of robots assigned to each position 𝑝. A robot 𝑟
will detect a chairman if and only if 𝑟 ∈ 𝑅𝑎 or 𝑟 ∈ 𝑅𝑏, or equivalently 𝑟 ∈ 𝑅𝑎 ∪ 𝑅𝑏. This means that the
results of the robots are equivalent to knowing 𝑅𝑎 ∪ 𝑅𝑏, and so we can determine 𝑎 and 𝑏 uniquely if
and only if 𝑅𝑎 ∪ 𝑅𝑏 is different from all other such unions. This can be checked by representing each
𝑅𝑝 in binary as an __int𝟏𝟐𝟖_t so that 𝑅𝑝 ∪ 𝑅𝑞 is simply the bitwise or of the two numbers, running in
time 𝑂(𝑁2) when using a hash map to check for collisions.†

Reconstructing 𝑎 and 𝑏 from the answers then simply works in exactly the same way. We can iterate
through all 𝑝 and 𝑞 and check whether the 𝑅𝑝 ∪ 𝑅𝑞 matches the results of all robots.

* Wait, what? Keep on reading to understand why…
† You might have noticed that no heuristic managed to get more points than intended in the last subtask…

2/4



Day 2
Task: avoid

Spoiler

All of our full solutions are based on generating the sets 𝑅𝑝 locally on our own computer, potentially
taking minutes or even hours, until we have a valid scheme. Such a scheme can then be encoded as
a list of numbers in the submission, and we use the above strategy to determine 𝑎 and 𝑏 from the
results of the robots.

Generating robots. Let us first describe some strategies that try to generate the plan robot by robot.
Fix 0 < 𝑝 < 1 and send any robot 𝜚 to any position 𝑥 with probability 𝑝, independently of any
other choices. We claim that for sufficiently many robots this will yield a valid scouting plan with
positive probability. To prove this, let us say that an assignment for a single robot distinguishes
two sets 𝐿 ≔ {𝑥, 𝑦} and 𝐿′ ≔ {𝑥′, 𝑦′} of possible chairman positions if the robot returns 1 for
precisely one of these two sets. Note that this happens with a positive probability 𝑞 (maximized
for 𝑝 ≈ 1

3 ). Moreover, for any other robot 𝜚
′, the events that 𝜚 distinguishes the two given 𝐿, 𝐿′ or

that 𝜚′ distinguishes them are independent; in particular, for 𝑟 robots the probability that we do
not distinguish them is (1 − 𝑞)𝑟. Summing over all 𝐿, 𝐿′ this yields an upper bound of 𝑁4(1 − 𝑞)𝑟

for the probability that we do not find a correct scouting plan. For 𝑟 → ∞ robots, this failure
probability converges to 0. In practice, this approach suffices to find solutions with 𝟓𝟎 robots in
reasonable time.
The previous strategy tends to generate plans that almost work, i.e. there are few pairs (𝐿, 𝐿′)
which we cannot separate. This allows us to get better results by ‘supersampling’: we first use
the above strategy for 𝑁 > 1000 positions (𝑁 ≈ 2000 seems to be the sweet spot); as long as
there are {𝑥, 𝑦} and {𝑥′, 𝑦′} which we can’t distinguish, we randomly throw away one of 𝑥, 𝑦, 𝑥′, 𝑦′.
This yields solutions with around 𝟑𝟓 to 𝟒𝟎 robots, depending on how much computing time you
are willing to invest or how clever you are in selecting the positions to discard.
Instead of all the fancy randomness, we can try to be more systematic in assigning positions to
the robots, somewhat akin to binary search.
For this, let us first consider the case of a single robot. Ideally, the two possible answers 0 and
1 should occur for around the same number of possible chairman positions. Doing the math,
we see that for this we should send the robot to a fraction of

𝛼 ≔ 1 −
√2
2
= 0.29289…

of the positions (note that this is not the optimal probability 𝑝 from the random approach!).
Similarly, for two robots, the outcomes 00, 01, 10, and 11 should occur for around the same
number of possible chairman positions. To achieve this, we can send the second robot to a
fraction of 𝛼 of the first robot’s positions and to a fraction of 𝛼 of the positions not visited by
the first robot.
If we iterate this idea to determine where to send 𝑘 robots, we run into the issue that 𝛼𝑘 → 0
rapidly; in particular, rounding errors take over around 𝑘 ≈ 7 and we do not separate the ‘blocks’
of possible positions for fixed return values evenly any more. We therefore switch to a greedy
approach that tries several random plans for each individual robot, and then takes the one that
minimizes the maximum size of any block. Possibly combining this with some local optimization,
we obtain solutions with around 𝟑𝟎 robots.

Generating positions. Another way to generate a solution is to fix the number of robots and to
generate positions one-by-one. We start without any positions. Then, we can iteratively add new
positions to our solution, always choosing a new set 𝑅𝑝 for a new position 𝑝 in such a way that there
are no collisions with any or the previous positions.

3/4



Day 2
Task: avoid

Spoiler

If we simply pick each set 𝑅𝑝 randomly (with the above probabilities), this manages to generate
a solution with 𝟑𝟎 robots.
If we try fewer robots than this, the number of valid choices for the next set 𝑅𝑝 becomes very
small. This means that every iteration takes very long and we do not reach the 1000 positions
that we need.
Instead, at some appropriate point during the computation we can simply start to keep all
possible compatible sets that would create no collision with the positions that we have gener-
ated to far. This makes it much faster to select the next set 𝑅𝑝. Moreover, we can connect this
with other heuristics, such as selecting 𝑅𝑝 in a way that maximises the number of remaining
compatible sets. This can produce a solution with 𝟐𝟕 robots.
Right now, the Scientific Committee only knows a single way to obtain a solution with fewer
robots. For this, we again select the sets 𝑅𝑝 iteratively. However, we perform this in a very
specific way. Namely, we only add sets with exactly 8 elements to our solution, and we also
only add them if their symmetric difference with every set chosen so far contains at least 6
elements. Moreover, we try to add these sets in increasing order if we look at them in their
binary representation. This produces a solution with 992 positions, which is not sufficient yet.
If we then iterate through all remaining sets that we haven’t tried so far (e.g. because they do
not have the correct number of elements), and we try to add them greedily to our solution, it is
possible to improve this solution to 998 positions. Unfortunately, this is still not enough. At
this point we are stuck…
…is what we would have said if we had not tried to throw some simulated annealing on this
solution to generate additional positions. After a short time, this manages to add two more
positions to our solution. This is then a solution with 𝟐𝟔 robots and 1000 positions, shown in
the picture below, where a black box (2 pixels wide and 10 pixels high) in row 𝜚 and column 𝑝
means that robot 𝜚 is sent to position 𝑝:

It turns out that our way of generating the initial solution with 992 positions is quite fragile.
Whenever we tried to change any part of this approach (say by going through the sets 𝑅𝑝 in a
random order when trying to add them), the solution got much worse.

For 25 robots, the best we were able to do is a solution with slightly below 800 positions. The Scientific
Committee also has no idea what the minimum number of robots is that a solution requires—we have
not even been able to prove that more than 19 robots are necessary.

4/4


