
Day 2
Task: incursion

Spoiler

The Ties That Guide Us (incursion)
by Lukas Michel

Throughout, we will refer to the problem in graph theoretic terms: the floor plan describes a tree with
𝑁 nodes, such that any node has degree ≤ 3.

Subtask 1. No degree 3 node

In this subtask, the tree is actually a line. Assume first that the number 𝑁 of nodes is odd. While you
and your assistant might receive this line in different numberings, there is one special node that can
be identified without reference to any numbering, namely the node in the middle. This suggests a
two step procedure to get to the secret node: first, we walk to the midpoint, and then we have our
assistant (who would not know our starting point) guide us from there—for this, he can simply mark
the path from the midpoint to the secret node (by placing exactly one tie in the respective rooms and
no ties anywhere else).
Note that if our starting position lies on the opposite side of the midpoint than the secret node, this
will need at most two steps over the shortest path between them (namely, when we ‘overshoot’ and
have to walk back to the secret node). However, when we start on the same side as the secret node,
actually walking to the midpoint might result in a huge detour. This issue can be solved as follows:

If our starting node is marked, we simply walk away from the midpoint (again, overshooting by
at most 1, resulting in a maximum detour of 2).
If not, we can simply stop at the first marked node we encounter (resulting in no detour at all).

The case where 𝑁 is even is only slightly more complicated: instead of a unique midpoint, we now
have two (neighbouring) nodes in the middle. In the first step, our assistant will simply mark all nodes
on the path from the secret node to the node in the middle that is closer. Almost the same strategy
as above will then work for us to find the secret node where we now try to walk to the marked point
in the middle:

If our current node is marked we walk towards the end that is closer to us; the last marked
node we encounter is the secret node.
If not, we walk to the midpoint that is further from our starting location. If we encounter a
marked node on the way, the first such node has to be the secret node. Otherwise we follow
the markings left by our assistant; the last marked node will be the secret one.

Subtask 2. Precisely one degree 2 node

In this subtask, the tree no longer needs to be a line (and in fact, it will almost never be). However,
there is still one special node that both we and our assistant can identify: the unique node with
degree 2. Using this observation we can now use a very similar strategy to the line case:

Our assistant will mark the path from the unique degree 2 node to the secret node.
We first walk from our current node to the unique degree 2 node until we visit a marked node
for the first time.
At that point, we can follow the markings (moving away from the unique degree 2 node) to the
secret node.

However, the third step is actually more subtle this time: as we are no longer just dealing with a line,
there might be several possibilites for the next node, and we have no way to tell which one of these is

1/3



Day 2
Task: incursion

Spoiler

marked without actually walking there. However, whenever we walk to the wrong node, this incurs a
cost of 2, so we can’t allow ourselves to have this happen too often.
To solve this, root the tree at the unique degree 2 node. We will then always walk into the larger
of the two subtrees first: if this is correct, everything is fine, and if not, then the marked path has
to continue to the smaller subtree. Thus, whenever we make a mistake, this halves the size of the
remaining subtree, which can only happen 𝑂(log𝑁) times. Let us analyze this more closely to see
that it really fits into the task constraints, for which it will be useful to argue in a bottom-up fashion
instead:

Let 𝑘 denote the number of children of our secret node (note that 𝑘 is at most 2 except for the
easy case that the secret node agrees with our chosen root). Then we might make a detour of
up to 2𝑘 at this node because of overshooting.
Consider now the marked nodes 𝑣1, … , 𝑣ℓ apart from the secret node where we we went to the
wrong subtree first (numbered from bottom to top), and let 𝑠𝑖 denote the corresponding subtree
sizes; we moreover write 𝑠0 for the size of the subtree rooted at the secret node. As we always
go to the larger subtree first, we have 𝑠𝑖+1 ≥ 2𝑠𝑖 + 1. Combining this with 𝑠0 ≥ 𝑘 + 1, we see
inductively that 𝑠ℓ ≥ 2ℓ(𝑘 + 2) − 1.
Our total detour is 2(𝑘 + ℓ). Trying 𝑘 = 0, 1, 2, we see that for a total detour of 32 we would need
to have 𝑁 ≥ 𝑠ℓ ≥ 216 − 1 = 65 535 (achieved for 𝑘 = 2, ℓ = 14), which is larger than the maximum
number of rooms.

Subtask 3. No further constraints

In the final subtask, we are given a completely general tree. In order to adapt the solution to the
previous subtask to this case, we somehow need to find a special node again that can be identified
without referring to the numbering of our nodes and edges (or, to use fancy graph theoretic terminology,
a node fixed by any automorphism of our tree). While already the line case shows that this need
not be possible, we can again solve this by also allowing a set of two neighbouring nodes instead.
Possible such choices are then the centers of the tree (nodes minimizing the maximum distance to
any other node) or the centroids (nodes minimizing the maximum component size when we remove
them). We can now again simply have our assistant mark the path from the secret node to the special
node (or the closer one of the two special nodes, if there is more than one) and then use the same
strategy as before to locate the secret node.
In our analysis, we need to consider one extra case: the root might have degree 3. In this case, if the
subtree containing the marked path is the smallest, we might actually make a detour of 4 right at the
root. However, in order to make a detour of 28 in the subtree of the marked path, this would then
need to contain at least 214 − 1 = 16 383 nodes (recycling the analysis from the previous subtask),
resulting in 𝑁 ≥ 49150.
Note in particular that the bounds in this task are quite tight: already with the slightly weaker bound
𝑁 ≤ 50000 our strategy would not be able to guarantee a detour of 30. In fact, one can force any
strategy to make a detour of at least 32 on the following tree with 𝑁 = 49150 nodes: take three
balanced binary trees of height 13 and add a new node connected precisely to their roots. This is
actually the only instance with less than 65535 nodes on which our strategy will lead to a detour
larger than 30.

2/3



Day 2
Task: incursion

Spoiler

Solutions with more ties.

If we are allowed to mark the nodes with integers up to 𝑁 − 1 (i.e. have our assistant leave behind
up to 𝑁 − 1 ties per room), a natural strategy is to simply mark each node with the distance to the
special node. We will then immediately recognize the special node upon entering, and before that we
can always simply walk to the unique neighbour whose marking is smaller than the current one. This
solves the line case directly, while for the general case we again need the idea to check the larger
subtree first.
For a solution with markings bounded by 2, we observe that the distance can only increase or decrease
by 1 when we travel to a neighbouring node. Thus, to recognize whether the distance decreased, it is
enough to remember the distance modulo 3. The secret node can be identified from this data as the
unique node such that we cannot decrease the distance by walking to a neighbouring node.

3/3


