
Day 2
Task: trade

Spoiler

Tricks of the Trade (trade)
by Lukas Michel and Tobias Lenz

Subtask 1. 𝑁 ≤ 200

In this subtask we have enough time to check each possible segment by computing the sum of the 𝐾
largest sale values and subtracting from this the sum of the costs of the segment. We can implement
this check in 𝑂(𝑁) by using the nth_element function, but even computing it via sorting in 𝑂(𝑁 log𝑁) is
fine. Moreover, we can also compute the optimal indices by marking those elements that are at least
as large as the 𝐾-th largest element of each such segment, where we reset all markings whenever we
find a new segment with a higher profit.
Overall the runtime of this solution is 𝑂(𝑁3) or 𝑂(𝑁3 log𝑁).

Subtask 2. 𝑁 ≤ 6000

In this subtask we improve the above idea by handling each segment in 𝑂(log𝑁) time. For this, we fix
the left endpoint of the segment, and we iterate through every possible right endpoint. At the same
time, we keep a priority queue with the 𝐾 largest elements of the segment, and we also keep track of
the sum of these elements as well as the costs of the current segment. This allows us to compute the
profit of the current segment in time 𝑂(log𝑁).
To compute the optimal indices, for each segment with the maximum profit that we encounter we
can store the segment along with its 𝐾-th largest element. We will denote the 𝐾-th largest element of
segment [ℓ, 𝑟] by 𝑡[ℓ,𝑟]. An index 𝑖 is then optimal if and only if there is a maximum profit segment [ℓ, 𝑟]
with ℓ ≤ 𝑖 ≤ 𝑟 and 𝑠𝑖 ≥ 𝑡[ℓ,𝑟]. Computing all such indices can be done efficiently with a minimum segment
tree or a sweep line approach, both in time 𝑂(𝑁 + 𝑆 log𝑁) where 𝑆 is the number of segments with
maximum profit.
Overall this leads to a runtime of 𝑂(𝑁2 log𝑁).

Subtask 3. 𝐾 = 2

For 𝐾 = 2, we observe that in any maximum profit segment [ℓ, 𝑟] you have to sell the robots ℓ and 𝑟 to
the other contestants.
This allows us to iterate through all possible right endpoints 𝑟 while we maintain the maximum profit
that we can gain from picking any left endpoint ℓ < 𝑟. This profit is 𝑠𝑟+𝑚𝑟 where𝑚𝑟 ≔ max1≤ℓ<𝑟 𝑠ℓ−∑𝑟𝑖=ℓ 𝑐𝑖.
We can update 𝑚𝑟 in 𝑂(1) whenever we move one step to the right by noting that

𝑚𝑟 = max{𝑚𝑟−1 − 𝑐𝑟, 𝑠𝑟−1 − 𝑐𝑟−1 − 𝑐𝑟}.

This allows us to compute the maximum profit in 𝑂(𝑁).
To compute the optimal indices, we can simply store all right endpoints that are part of a maximum
profit segment and then repeat the procedure backwards to obtain all left endpoints of maximum
profit segments. Together, these two sets form the set of optimal indices by our observation.

Subtask 4. 𝐾 ≤ 200

Let 𝑝(𝑟, 𝑘) denote the maximum achievable profit if we buy some segment [ℓ, 𝑟] and sell 𝑘 robots of
this segment. Then, the maximum profit is max1≤𝑟≤𝑁 𝑝(𝑟, 𝐾). As base cases, we have 𝑝(𝑟, 0) = 0 and
𝑝(0, 𝑘) = −∞ for 𝑘 > 0. Then, we can calculate 𝑝 recursively for 𝑟, 𝑘 > 0 as

𝑝(𝑟, 𝑘) = max{𝑝(𝑟 − 1, 𝑘), 𝑝(𝑟 − 1, 𝑘 − 1) + 𝑠𝑖} − 𝑐𝑖.

1/3



Day 2
Task: trade

Spoiler

This is because we can choose whether or not to sell the 𝑖-th robot. This formula can be evaluated in
𝑂(𝑁𝐾) using dp.
To find the optimal indices, we reconstruct all optimal dp transitions. If a transition (𝑖, 𝑘) → (𝑖 + 1, 𝑘 + 1)
appears in an optimal solution, then the 𝑖-th robot is part of an optimal transaction.

Subtask 5. No further constraints.

We can visualize the dp of the previous subtask as a directed acyclic graph with nodes (𝑟, 𝑘) and edges
(𝑖 − 1, 𝑘) → (𝑖, 𝑘) with weight −𝑐𝑖 and
(𝑖 − 1, 𝑘) → (𝑖, 𝑘 + 1) with weight 𝑠𝑖 − 𝑐𝑖.

The problem of finding the maximum profit is then equivalent to finding the longest path from some
node of the form (ℓ, 0) to some node (𝑟, 𝐾) in this graph. For example, the graph for 𝑁 = 3 and 𝐾 = 2
looks like this:

0, 0 1, 0 2, 0 3, 0

0, 1 1, 1 2, 1 3, 1

0, 2 1, 2 2, 2 3, 2

𝑠 1−
𝑐 1

𝑠 1−
𝑐 1

−𝑐1

−𝑐1

𝑠 2−
𝑐 2

𝑠 2−
𝑐 2

−𝑐2

−𝑐2

𝑠 3−
𝑐 3

𝑠 3−
𝑐 3

−𝑐3

−𝑐3

For a left endpoint ℓ, we say that a right endpoint 𝑟 > ℓ is ℓ-optimal if buying the segment [ℓ, 𝑟] achieves
the maximum profit possible for this fixed left endpoint ℓ.

Lemma 1. Let ℓ1 < ℓ2 < 𝑟2 < 𝑟1 be such that 𝑟1 and 𝑟2 are ℓ1- and ℓ2-optimal respectively. Then, 𝑟2 is
also ℓ1-optimal, and 𝑟1 is also ℓ2-optimal.

Proof. Let 𝑝1 and 𝑝2 be longest paths corresponding to the intervals [ℓ1, 𝑟1] and [ℓ2, 𝑟2]. The paths 𝑝1
and 𝑝2 must intersect at some vertex 𝑣 of the graph:

ℓ1 ℓ2

𝑟2 𝑟1

v

2/3



Day 2
Task: trade

Spoiler

The paths from 𝑣 to 𝑟1 and from 𝑣 to 𝑟2 must have the same length as we could otherwise replace the
part of 𝑝1 or 𝑝2 that comes after 𝑣 with a longer path. In particular, the path from ℓ1 to 𝑟2 via 𝑣 has the
same length as 𝑝1, and the same holds for the path from ℓ2 to 𝑟1 compared to 𝑝2. Hence, buying the
segment [ℓ1, 𝑟2] or [ℓ2, 𝑟1] also achieves the maximum profit.

Let opt(ℓ) be the smallest ℓ-optimal right endpoint. If we can compute opt(ℓ) for every possible left
endpoint ℓ, then the maximum overall profit is the maximum profit of the segments [ℓ,opt(ℓ)]. From
the lemma above we get that opt(ℓ) ≤ opt(ℓ + 1).
This means that we can apply the divide and conquer optimization: First, we compute opt(𝑚) for
𝑚 = 𝑁/2 by iteratively testing every possible value 𝑟. Then, to compute opt(ℓ) for ℓ ∈ [1,𝑚 − 1], we
only need to consider 𝑟 ≤ opt(𝑚) as possible right endpoints, and for ℓ ∈ [𝑚 + 1, 𝑁] we only check
𝑟 ≥ opt(𝑚). For these intervals, we can apply the idea recursively. In total, this means that we have to
check at most 𝑂(𝑁 log𝑁) values of 𝑟.
However, during this divide and conquer algorithm, we still need an efficient way to compute the
maximum profit of a segment [ℓ, 𝑟]. Since we can compute the costs of such a segment with prefix sums
(or one of many other ways), we focus on efficiently computing the sum of the 𝐾 largest elements of this
segment. For this, recall our approach from Subtask 2. There, we kept a set of the 𝐾 largest elements
of our current segment [ℓ, 𝑟] as well as their sum, and we were able to efficiently add elements to this
segment.
In our divide and conquer algorithm, we can now always move our current segment [ℓ, 𝑟] to the segment
where we need to know the sum of the 𝐾 largest elements. However, for this we would also need to
be able to remove elements from the segment. Fortunately, this is also possible: in addition to the
set with the 𝐾 largest elements, we can also keep a set with all the other elements of the current
segment. If we now delete an element, we can delete it from the appropriate set and rebalance the
two sets so that afterwards the top set contains the 𝐾 largest elements once more.
With the standard analysis of the divide and conquer optimization, we can prove that ℓ and 𝑟 move at
most 𝑂(𝑁 log𝑁) steps during this process, and so this algorithm runs in time 𝑂(𝑁 log2 𝑁). It would also
have been possible to use persistent segment trees to compute the sum of the 𝐾 largest elements,
which would have resulted in the same complexity.
For a full solution, it remains to compute the optimal indices. In Subtask 2 we already noted that
if there are 𝑆 segments with maximum profit, we could do it in time 𝑂(𝑁 + 𝑆 log𝑁). However, in this
subtask, it might hold that 𝑆 ∈ Θ(𝑁2) which makes this approach too slow. So, we have to reduce the
number of segments that we need to consider.
For this, assume that [ℓ1, 𝑟1] and [ℓ2, 𝑟2] are segments with maximum profit with ℓ1 < ℓ2 < 𝑟2 < 𝑟1 and
that 𝑖 ∈ [ℓ1, 𝑟1] is an optimal index. This means that 𝑖 is one of the 𝐾 largest elements in one of these
two segments. In this case, we know from the lemma that [ℓ1, 𝑟2] and [ℓ2, 𝑟1] are also segments with
maximum profit. Since these segments are shorter, it follows that 𝑖 must also be an optimal index of
one of the segments [ℓ1, 𝑟2], [ℓ2, 𝑟2], or [ℓ2, 𝑟1].
In particular, if ℓ1 < ℓ2 are left endpoints of segments with maximum profit with no such endpoint in
between, for ℓ1 we only need to consider right endpoints 𝑟 with opt(ℓ1) ≤ 𝑟 ≤ opt(ℓ2) when computing
all optimal indices. This means that we will only consider at most 2𝑁 segments in total, allowing us to
compute all optimal indices with a two pointer approach in 𝑂(𝑁 log𝑁).

3/3


