
Day 1
Task: grading-server

Spoiler

Bring Down the Sky Grading Server (grading-server)
by Tobias Lenz and Lucas Schwebler

We write 𝑁 for the maximum allowed value of 𝑐H, 𝑓H, 𝑐G, 𝑓G. Moreover, we say that a player sabotages
the other player if they take down one of their firewalls.

Subtask 1. 𝑆, 𝑐H, 𝑓H, 𝑐G, 𝑓G ≤ 75

We can represent every possible state of the game with a tuple of four integers (𝑐1, 𝑓1, 𝑐2, 𝑓2), where
(𝑐1, 𝑓1) are the computing power and number of firewalls of the current player and (𝑐2, 𝑓2) are the
same for the other player. There are 𝑂(𝑁4) such states, and so we use dp to compute whether each
state is a winning or losing state for the first player. This works using the standard observation that a
state is winning if and only if it can reach a losing state.

Subtask 2. 𝑆, 𝑐H, 𝑓H, 𝑐G, 𝑓G ≤ 300

Lemma 1. If (𝑐1, 𝑓1, 𝑐2, 𝑓2) is winning for player 1, then the state is still winning if we increase 𝑐1 or 𝑓1.
In the same way, if the initial state is losing, it stays losing if we increase 𝑐2 or 𝑓2.

Thus, we can compute 𝐶(𝑓1, 𝑐2, 𝑓2) as the minimum 𝑐1 such that (𝑐1, 𝑓1, 𝑐2, 𝑓2) is a winning state. This
can be done with dp in 𝑂(𝑁3 log𝑁) with binary search. It’s also possible to compute it in 𝑂(𝑁3) using
𝐶(𝑓1, 𝑐2, 𝑓2) ≤ 𝐶(𝑓1, 𝑐2 + 1, 𝑓2).

Implementation detail. One has to be careful when implementing this. Otherwise, the dp might get
cyclic dependencies when player 1 attacks. This can be solved by also trying both possible moves for
player 2 after an attack by player 1.

Subtask 3. 𝑆 = 1

Define 𝛼1 ≔ 𝑐1 − 𝑆 ⋅ 𝑓2 and 𝛼2 ≔ 𝑐2 − 𝑆 ⋅ 𝑓1. Intuitively, those values represent the damage caused by a
player if they attack the other. Obviously, if 𝛼1 ≤ 0, the only sensible choice for player 1 is to sabotage.
In this interpretation, taking down a firewall just increases 𝛼1 by 𝑆 and this move can be preformed at
most 𝑓2 times. Thus, increasing 𝑓2, for a fixed 𝛼1, makes a state better for player 1, i.e. if (𝛼1, 𝑓1, 𝛼2, 𝑓2)
is a winning state, so is (𝛼1, 𝑓1, 𝛼2, 𝑓2 + 1).

Lemma 2. If 𝛼1 ≥ 𝑆 and 𝛼2 ≤ 𝑆, there is a winning strategy for player 1.

Proof. Player 1 can maintain this invariant by attacking: Afterwards the new value of 𝛼2 is 𝛼2 − 𝛼1 ≤
𝑆 − 𝑆 = 0. Thus, player 2 has to sabotage. Then, we still have 𝛼2 ≤ 𝑆, and 𝛼1 remains unchanged.

Lemma 3. If 𝛼2 ≥ 𝑆, it is optimal for player 1 to attack.

Proof. Assume for contradiction this were not the case and pick a (𝛼1, 𝑓1, 𝛼2, 𝑓2) with 𝛼2 ≥ 𝑆 and 𝑓2
minimal, such that sabotaging is a winning move, but attacking is not. In particular, 𝑓2 ≥ 1.
Suppose that player 1 sabotages, increasing 𝛼1 by 𝑆. If player 2 attacks, this will decrease 𝛼1 back to a
value 𝛼′1 ≤ 𝛼1. As sabotaging was assumed to be a winning move, the new position (𝛼

′
1, 𝑓1, 𝛼2, 𝑓2 − 1) is

a winning position, hence so is (𝛼1, 𝑓1, 𝛼2, 𝑓2 − 1). By minimality of our counterexample this means that
attacking is a winning move in this position, i.e. (𝛼2, 𝑓2 − 1, 𝛼1, 𝑓1) is losing. But then also (𝛼2, 𝑓2, 𝛼1, 𝑓1)
has to be losing by the above observation, i.e. attacking was a winningmove in the original position.

1/4



Day 1
Task: grading-server

Spoiler

Combining those observations with 𝑆 = 1, we can obtain an optimal strategy for player 1. It turns out
that whether a state is winning does not depend on 𝑓1, 𝑓2. Let 𝑤(𝛼1, 𝛼2) be true if player 1 wins and
false otherwise. Using the above observations, we can calculate 𝑤 recursively:

𝑤(𝛼1, 𝛼2) = {
¬𝑤(𝛼2 − 𝛼1, 𝛼1) if 𝛼1, 𝛼2 > 0,
true if 𝛼1 ≥ 𝛼2,
false otherwise.

Evaluating this formula recursively has running time 𝑂(log𝑁) because we repeatedly subtract one
value from the other, similar to the Euclidean Algorithm, until one of them becomes ≤ 0.

Subtask 4. 𝑆, 𝑐H, 𝑓H, 𝑐G, 𝑓G ≤ 2 000

We can reuse Lemma 2 and 3. This way, we know the optimal strategy if 𝛼1 ≤ 0, 𝛼1 ≥ 𝑆 or 𝛼2 ≥ 𝑆. Notice
that if 𝑓2 > 0 and 𝛼2 ≤ 0, player 1 can sabotage and win with Lemma 2. Thus, the only cases in which
we don’t know the optimal strategy are those which satisfy

0 < 𝛼1, 𝛼2 < 𝑆, 𝑓2 > 0, and 𝑓1, 𝑓2 ≤
𝑁
𝑆
.

The last inequality must hold because otherwise at least one 𝛼𝑖 would be negative. We can compute a
dp for these unknown states to determine which player wins. There are 𝑂(𝑁2) many such states and
each reduction takes 𝑂(log𝑁) by a similar analysis as above.

Subtask 5. 𝑆 ≤ 400

Suppose that the game is an interesting state, so we don’t know the optimal move yet. If player 1
sabotages, this increases 𝛼1 to a value > 𝑆. Thus, player 2 has to attack. In total, this increases 𝛼1 by
𝛽2 ≔ 𝑆 − 𝛼2. Define 𝛽1 ≔ 𝑆 − 𝛼1 similarly.

Lemma 4 (Death by sabotage). Player 1 has a winning strategy if 𝛽2 ⋅ 𝑓2 ≥ 𝛽1.

Proof. Player 1 sabotages 𝑓2 times in a row. This increases 𝛼1 by 𝑓2 ⋅𝛽2. If 𝛽2 ⋅𝑓2 ≥ 𝛽1, then 𝛼1+𝛽2 ⋅𝑓2 ≥ 𝑆
and so player 1 wins by Lemma 2.

Now all interesting states satisfy 𝛽2 ⋅ 𝑓2 < 𝛽1 < 𝑆. Before attacking, player 1 needs to make sure
that player 2 cannot apply the same strategy to win. After the attack of player 1, 𝛼2 is at least −𝑆. If
𝛽1 ⋅ 𝑓1 ≥ 2𝑆, player 2 can make 𝛼2 larger than 𝑆—and therefore win—by taking down all firewalls. So
player 1 must not attack if 𝛽1 ⋅ 𝑓1 ≥ 2𝑆.

Lemma 5. There are 𝑂(𝑆2 log 𝑆) interesting states.

Proof. Using the standard approximation of the harmonic series we compute the number of interesting
states as

∑
𝛽1,𝛽2,𝑓1,𝑓2

[𝛽1𝑓1 ≤ 2𝑆][𝛽2𝑓2 ≤ 𝛽1] ≤ ∑
𝛽1

∑
𝛽2

2𝑆
𝛽1

⋅
𝛽1
𝛽2

= 𝑂 (∑
𝛽1

2𝑆 log 𝛽1) = 𝑂(𝑆
2 log 𝑆).

Subtask 6. 𝑓H, 𝑓G ≤ 125

We now present a solution which is fast when 𝑓1, 𝑓2 are small.

2/4



Day 1
Task: grading-server

Spoiler

Lemma 6. For fixed 𝑓1, 𝑓2 there exists a critical attack value 𝛾 ≔ 𝛾(𝑓1, 𝑓2) such that it is optimal for
player 1 to attack if 𝛼2 ≥ 𝛾 and optimal to sabotage otherwise.

Proof. Consider the states 𝑇1 = (𝛼1, 𝑓1, 𝛼2, 𝑓2) and 𝑇2 = (𝛼1 + 1, 𝑓1, 𝛼2 + 1, 𝑓2).
If attacking is a winning move in 𝑇1, it is also a winning move in 𝑇2: Indeed, after the attack we
get the states

𝑇 ′1 = (𝛼2 − 𝛼1, 𝑓2, 𝛼1, 𝑓1) and 𝑇 ′2 = (𝛼2 − 𝛼1, 𝑓2, 𝛼1 + 1, 𝑓1).

Those states are identical except for the value of 𝛼1. Since it’s higher in 𝑇 ′2, the latter state is
still winning for player 1.
If sabotaging is a losing move in 𝑇1 it is also in 𝑇2: Indeed, after sabotaging and the necessary
following attack by player 2, we are in the states

𝑇 ′1 = (𝛼1 + 𝑆 − 𝛼2, 𝑓1, 𝛼2, 𝑓2 − 1) and 𝑇 ′2 = (𝛼1 + 𝑆 − 𝛼2, 𝑓1, 𝛼2 + 1, 𝑓2 − 1).

For fixed 𝑓1, 𝑓2 let now ℎ𝐴(𝛼2) denote the minimum 𝛼1 with which player 1 wins if he attacks in the
state (𝛼1, 𝑓1, 𝛼2, 𝑓2), and let ℎ𝐹(𝛼2) be the same if he sabotages. From the above points it follows that

ℎ𝐴(𝛼2 + 1) ≤ ℎ𝐴(𝛼2) + 1 and ℎ𝐹(𝛼2 + 1) ≥ ℎ𝐹(𝛼2) + 1,

hence ℎ𝐹(𝛼2 +1)−ℎ𝐴(𝛼2 +1) ≥ ℎ𝐹(𝛼2) −ℎ𝐴(𝛼2). So the difference 𝛿(𝛼2) ≔ ℎ𝐹(𝛼2) −ℎ𝐴(𝛼2) is increasing in 𝛼2.
Noticing that attacking is an optimal move for every 𝛼1 if and only if 𝛿(𝛼2) ≥ 0 finishes the proof.

Observe that once we know all the critical attack values, we can simply simulate the game completely
to determine the winner, which in turn allows us to compute all the 𝛾(𝑓1, 𝑓2) recursively. To compute
𝛾(𝑓1, 𝑓2), we use binary search to find minimum 𝛼2 with ℎ𝐴(𝛼2) ≤ ℎ𝐹(𝛼2). Computing ℎ𝐴, ℎ𝐹 is also done
with binary search.
However, to make the simulation efficient enough, we will have to do several sabotages in one step,
which requires us to find for a given state the largest 𝑓′2 ≤ 𝑓2 such that attacking is optimal. This can
be done using binary search on a segment tree. A somewhat intricate analysis* then reveals that
our simulation only takes 𝑂(log log 𝑆) rounds, leading to a runtime of 𝑂((𝑄 + 𝐹2 log2 𝐹) log𝑁 log log 𝑆)
where 𝐹 denotes the maximum value of 𝑓1, 𝑓2.

Subtask 7. No further constraints

The winning strategy from subtask 5 tries to take down all firewalls. Let’s try to take down 𝑥 firewalls,
let player 2 do something, and take down the remaining 𝑓2 − 𝑥 firewalls in the next step. Suppose
that the current state is interesting in the sense of subtask 5. If player 1 attacks, player 2 cannot
increase the value of 𝛼2 to 𝑆 (otherwise the state would not be interesting). If player 1 takes down 𝑥
firewalls before attacking, his new 𝛽′1 equals 𝛽1 − 𝛽2𝑥. Thus, even if player 2 takes down all firewalls,
he will have 𝛼2 ≤ 𝑆 − 𝛽2𝑥𝑓1 because every sabotage will increase 𝛼2 by 𝛽′2 instead of 𝛽2. This means
𝛽′2 ≥ 𝛽2𝑥𝑓1. Now, player 1 takes down all remaining firewalls, increasing 𝛼1 by at least 𝛽2𝑓1𝑥(𝑓2 − 𝑥). If
we now specialize to 𝑥 ≔ 1

2𝑓2, this leads to an increase of
1
4𝛽2𝑓1𝑓

2
2 . Since 𝛼1 > −𝑆 before player 1 takes

down the remaining firewalls, we see that this gives player 1 a winning strategy if

𝛽2𝑓1𝑓
2
2 > 8𝑆.

Note that in case of 𝑓1 = 0 player 1 can still apply the same strategy if 𝛽2𝑓22 > 8𝑆, while the case with
𝑓2 = 0 is not interesting because player 1 has to sabotage. So all interesting states satisfy 𝑓2 > 0 and
𝛽2max{𝑓1, 1}𝑓22 ≤ 8𝑆.

* An important step in this analysis is to show that if player 1 attacks, player 2 has to sabotage until 𝑓′1 ≤
𝑓1
𝑓2
.

3/4



Day 1
Task: grading-server

Spoiler

Lemma 7. There are 𝑂(𝑆 log 𝑆) tuples (𝑓1, 𝛽2, 𝑓2) with 𝑓2 > 0 satisfying 𝛽2max{𝑓1, 1}𝑓22 ≤ 8𝑆.

Proof. For any 𝑝 ≥ 0, there are
𝑝

∑
𝑓2=1

⌊𝑝/𝑓22 ⌋ ≤ 𝑝
∞

∑
𝑓2=1

𝑓−22 < 2𝑝

pairs (𝑓1, 𝑓2) with 1 ≤ 𝑓1, 𝑓2 and 𝑓1 ⋅ 𝑓22 ≤ 𝑝 because the sum
∞
∑
𝑖=1
𝑖−2 converges to 𝜋2

6 < 2. Taking 𝑝 = 8𝑆/𝛽2
and summing over all 𝛽2 then gives the desired bound.

For every such tuple, we compute the minimum 𝑐1 with which the state is winning with binary search;
this gives us an 𝑂(𝑆 log2 𝑆) solution. Again, one needs to implement this carefully to prevent cyclic dp
dependencies.

Final remarks.

Combining the solutions for the last two subtasks with some additional ideas, it is also possible to
solve this problem in time 𝑂(√𝑆 log4 𝑆+𝑄√𝑆 log 𝑆 log log 𝑆). Suppose that we are in an interesting state
and player 1 attacks. This implies that we had 𝑓2 < 𝛽1 (otherwise, use death by sabotage). After the
attack, player 2 sabotages some rounds until he gets into an interesting state. Then, 𝑓21𝑓

2
2 < 𝑓

2
1𝑓2𝛽1 < 8𝑆.

Notice that there are only 𝑂(√𝑆 log 𝑆) such pairs (𝑓1, 𝑓2). Use the idea of subtak 6 for them, leading
to a precomputation time of 𝑂(√𝑆 log4 𝑆). To answer a query, we simply try all possible number of
sabotages before player 1 attacks. For every of those number of sabotages, we can find the winner
very efficiently using the idea from subtask 6. Since 𝑓2 ≤ √8𝑆, the number of sabotage rounds to try
is quite small and we get the above time complexity. This is fast enough to solve the problem for
constraints 𝑆 ≤ 106, 𝑄 ≤ 25 000.

4/4


