
Day 1
Task: light

Spoiler

A Light Inconvenience (light)
by Fabian Gundlach

Subtask 1. Only one call to leave per testcase

For this subtask, it will be convenient to reindex the performers, numbering them from right to left,
starting at 1. (Any call to join or leave will then result in an index shift). Moreover, we will always only
remember the sequence 1 = 𝑓1 < 𝑓2 < ⋯ of performers whose torches are on fire.
Let’s think about this problem greedily: what condition do we need to put on the 𝑓𝑖’s to be able to
survive the next act?

We can always handle the next call to join with 𝑡𝑎 = 𝑝𝑎: we can simply shift everything to the
right by 𝑝𝑎 (i.e. keeping the previous 𝑓𝑖’s), adding further fires on the left if desired.
We can handle a single call to leave by announcing 𝑡𝑎 = 𝑝𝑎 if and only if 𝑓𝑖 ≤ 2𝑓𝑖−1 + 1 and the
leftmost torch is on fire: the first condition is necessary since having all performers starting at
𝑓𝑖 leave will have 𝑝𝑎 = 𝑓𝑖, and we have to light the torch of performer 𝑓𝑖 +1; the second condition
is necessary to handle all but the leftmost performer leaving.
On the other hand, it is not hard to check that this also sufficient to handle any call to leave: if
we just announce 𝑝𝑎, this is enough to light the torch of the rightmost performer remaining on
stage.

This suggests taking 𝑓𝑖 = 2𝑖−1 (plus the leftmost performer) before the first call to leave, and then
e.g. extinguishing all torches except the rightmost one. For any call to join after that, we can simply
shift everything to the right again without adding further flaming torches. This will never have more
than log2 𝑁+1 torches on fire at the same time, which easily fits into the limit specified in the statement.

Subtask 2. 𝑁 ≤ 700

Let us index the torches as in the task statement again. It suffices to announce 𝑓1 = 1, 𝑓2 = 6, 𝑓2 =
11,… , 𝑓𝑘 = 𝑛 (where 𝑛 is the number of performers currently in line) at the end of any act; this will in
fact only require 𝑡𝑎 = 4 for any leave or 𝑡𝑎 = 4𝑝𝑎 for join. The maximum number of flaming torches is
1
5𝑁 + 1.

Subtask 3. 𝑁 ≤ 5000

The previous solution does not make use of the fact that we are allowed to announce large numbers
whenever 𝑝𝑎 is sufficiently large, giving us much more freedom.
Intuitively, we should exploit this by having much more fires near the right end of the line. Consider the
following straegy: fix a number 𝐾 and split the performers into blocks of length 𝐾, starting on the left.
We will always guarantee that the leftmost performer in each block (i.e. performers 1, 𝐾 + 1, 2𝐾 + 1,… )
holds a flaming torch. Moreover, every torch in the last block should be on fire.
Again any call to join would be trivial to handle. If we have a call to leave, however, we would run
into a problem to uphold our invariant when all 0 < 𝑘 ≤ 𝐾 performers of the last block leave, as we
will need 𝑡𝑎 = 𝐾 − 1 to fill up the last block. To avoid this issue, we will always hold some additional
torches in the penultimate block: namely, we will have the leftmost ℓ torches on fire, where ℓ is the
number of torches missing in the last block. As a result:

If 𝑗 < 𝑘 performers leave, we just announce 𝑡𝑎 = 𝑗 to add fires to the penultimate block.
If 𝑘 ≤ 𝑗 < 𝐾 performers leave, announcing 𝑡𝑎 = 𝑗 is now enough to fill up the new final block (and
it is never a problem to add the fires on the left of the new penultimate block).

1/3



Day 1
Task: light

Spoiler

If at least 𝐾 performers leave, we are free to do whatever we want in any block anyhow.
Again, the invariant is also trivial to uphold in join.
The maximum number of torches on fires is 𝑁/𝐾 + 𝐾, so taking 𝐾 = 75 suffices to solve this subtask.

Subtask 4. 𝑁 ≤ 25000

This is exactly as in the previous subtask, except that we now exploit that we are allowed to announce
up to 𝑡𝑎 = 5𝑝𝑎, which allows us to increase the distance between the torches by a factor of 5.

Subtask 5. 𝑁 ≤ 100000

The solution to this subtask interpolates between the solution to Subtask 3 presented above and the
first full solution discussed below to achieve 𝑡𝑎 = 𝑝𝑎 with at most 𝑂(

3√𝑁) fires.

Subtask 6. 𝑁 ≤ 500000

Again, this can be solved by spreading out the fires from the previous solution by a factor of 5.

Subtask 7. No further constraints.

There are at least two different approaches that yield full score:

First full solution. Having blocks of a fixed size will of course only ever get us that far, so let us
combine this with the idea of having the distances between the fires grow exponentially as we walk
from right to left. A first attempt to implement this strategy might be to always have for any 𝑘 a
flaming torch at the largest multiple of 2𝑘 that is ≤ 𝑛. Unfortunately, this does not work for similar
reasons as in the third subtask: when 𝑛 itself is a power of 2, then reducing 𝑛 by 1 will still incur a
large cost. Fortunately, also the solution to this problem is similar (although the analysis is somewhat
harder this time): we enforce flaming torches at the two largest multiples of 2𝑘 for each 𝑘, and up to
one additional torch in the penultimate block of size 2𝑘 to light the third largest multiple of 2𝑘−1 if
this becomes necessary during leave.

Second full solution. Let us analyze the solution to the very first subtask more closely, for which we
again flip our indexing. We have seen that we can handle a single call to leave if and only if 𝑓𝑖 ≤ 2𝑓𝑖−1 +1
for all 𝑖 and the leftmost torch is on fire. Moreover, we can trivially maintain this invariant for any call
to join.
The crucial observation now is that we can also uphold this invariant for any call to leave by announcing
𝑝𝑎 and then selecting fires as follows: assumewe have already selected new torches 1 = 𝑔1 < 𝑔2 < ⋯ < 𝑔𝑖
satisfying the above; to select the next torch, we have to show that one of the torches 𝑔𝑖 + 1,… , 2𝑔𝑖 + 1
is on fire. This is obviously true if one of these torches is the leftmost one or if 𝑔𝑖 < 𝑝𝑎. In the remaining
case, consider the smallest 𝑗 with 𝑓𝑗+1 − 2𝑝𝑎 > 2𝑔𝑖 + 1 (note that 𝑓𝑗+1 − 2𝑝𝑎 is the rightmost torch lit by
the performer that was previously at position 𝑓𝑗+1). Then 𝑓𝑗 − 2𝑝𝑎 < 2𝑔𝑖 + 1 by minimality, but also

𝑓𝑗 − 𝑝𝑎 ≥
𝑓𝑗+1 − 1
2

− 𝑝𝑎 > 𝑔𝑖.

Thus, at least one of the torches 𝑓𝑗−2𝑝𝑎, … , 𝑓𝑗−𝑝𝑎 (all of which are currently on fire) lies in {𝑔𝑖+1,… , 2𝑔𝑖+1}
as claimed.
We now have to be slightly clever in selecting the 𝑔𝑖’s in order to ensure that our program runs in
time and that there aren’t too many torches on fire.

2/3



Day 1
Task: light

Spoiler

One way to do so is to always pick the largest 𝑔𝑖+1 possible, which guarantees that 𝑔𝑖+2 > 2𝑔𝑖 + 1
and hence ensures that we only ever have at most 2 log2 𝑁 + 𝜖 torches on fire.
More generally, you can come up with any reasonably time-efficient way to construct the 𝑔𝑖’s and
then ‘sparsify’ your result using the previous observation. For example, one uniform way that
avoids the above case distinction is to start with the values 𝑓𝑗 − 𝑝𝑎 plus the rightmost performer
and then double each of them until you would run past one of the previously constructed
elements.

Partial solutions. While we only described the full solutions above, there are various ways to obtain
partial scores on the last subtask. One way to do so is to use larger bases in the above construction,
i.e. only guaranteeing that 𝑓𝑖 ≤ 𝛼𝑓𝑖−1 + 1 for some 𝛼 > 1. This becomes relevant if one uses less clever
ways to sparsify the fires, which would otherwise result in too many torches being on fire.
In addition, there are several ad-hoc constructions.

3/3


